Groups with non-central dimension quotients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Quotients of Biautomatic Groups

The quotient of a biautomatic group by a subgroup of the center is shown to be biautomatic. The main tool used is the Neumann-Shapiro triangulation of S, associated to a biautomatic structure on Zn. As an application, direct factors of biautomatic groups are shown to be biautomatic. Biautomatic groups form a wide class of finitely presented groups with interesting geometric and computational pr...

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

Quotients of Algebraic Groups

In this note, we study the existence and structure of the homogeneous space G/H for algebraic groups H ⊂ G. Let k be a field. All schemes considered will be k-schemes. By an affine algebraic group, we mean an affine group scheme of finite type over k. Note that we do not assume our schemes are reduced yet. We will only consider affine algebraic groups. From now on, G will denote an algebraic gr...

متن کامل

finite groups with five non-central conjugacy classes

‎let $g$ be a finite group and $z(g)$ be the center of $g$‎. ‎for a subset $a$ of $g$‎, ‎we define $k_g(a)$‎, ‎the number of conjugacy classes of $g$ which intersect $a$ non-trivially‎. ‎in this paper‎, ‎we verify the structure of all finite groups $g$ which satisfy the property $k_g(g-z(g))=5$ and classify them‎.

متن کامل

Non-microstates Free Entropy Dimension for Groups

We show that for any discrete finitely-generated group G and any self-adjoint n-tuple X1, . . . , Xn of generators of the group algebra CG, Voiculescu’s non-microstates free entropy dimension δ(X1, . . . , Xn) is exactly equal to β1(G) − β0(G) + 1, where βi are the L Betti numbers of G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1995

ISSN: 0022-4049

DOI: 10.1016/0022-4049(94)00132-5